Blackspot Tuskfish


If you’re looking for a little romance with tropical sunshine and colourful reefs, these lovely Labridae would make a perfect holiday acquaintance. I advise double-checking to make sure the colours are still there, unless you vibe with that ghostly dead reef look. If you follow Tuskfish fashion trends you’ll at the very least stand out in the bleached-out underwater city.

Don’t expect them to commit to a single identity or one relationship. Tuskfish along with 1.5% of teleosts Actinopterygii infraclass display sex change adaptions. Living in reefs leads to a lot of labile adaptions, optimising reproductive success in fluctuating environments. They cope well with change, so even if you don’t someone in you’re temporary haremic group will. All tuskfish under 40cm are female they’ll change sex from female to male reaching 50 to 64 cm. It’s entirely normal and an excellent evolutionary adaptation.

Hermaphroditism mostly manifests in two modes Simultaneous and sequential; which can be protandrous (male to female), or protogynous (female to male) the most common among fish and the one displayed in tuskfish. The Size Average Modal (SAM) theory explains this adaption as sex change is timed to maximize higher reproductive success, male tuskfish hold a monopoly over females (haremic polygyny) so when fish reach a certain size and maturity it increases their reproductive success for the largest female to undergo protogyny if no decent males are swimming about. The SAM theory only works for sequentially hermaphroditic species, which lucky for me Tuskfish are. As per usual the bis are upsetting the binary and neat little modals again, as the often forgotten and unexplainable bidirectional hermaphroditism isn’t explained by the size-average-modal.

European Sea Sturgeon

Whitepotted Eagle Rays

Tiger Shark

Whale sharks

Lubitz, N. et al. (2022) “The role of context in elucidating drivers of Animal Movement,” Ecology and Evolution, 12(7). Available at: https://doi.org/10.1002/ece3.9128.
Akita, Y., Ebisawa, A., Hirai, N., Asami, K., Ohta, I., Uehara, M., Teruya, K., Yamada, H., Kobayashi, M., Sato, T. and Okuzawa, K., 2017. Difference in age, growth, and sexual demography of black‐spot tuskfish, Choerodon schoenleinii (Valenciennes, 1839), in two adjacent populations, Ryukyu Archipelago, southern Japan. Journal of Applied Ichthyology, 33(3), pp.437-442. doi.org/10.1111/jai.13270

Casas, L. and Saborido-Rey, F. (2021) “Environmental cues and mechanisms underpinning sex change in fish,” Sexual Development, 15(1-3), pp. 108–121. Available at: https://doi.org/10.1159/000515274.

Kuwamura, T. et al. (2020) “Hermaphroditism in fishes: An annotated list of species, phylogeny, and mating system,” Ichthyological Research, 67(3), pp. 341–360. Available at: https://doi.org/10.1007/s10228-020-00754-6.

Pryor, K.J. and Milton, A.M., 2019. Tool use by the graphic tuskfish Choerodon graphicus. Journal of fish biology, 95(2), pp.663-667. DOI: 10.1111/jfb.13983

Sato, T., Kobayashi, M., Takebe, T., Hirai, N., Okuzawa, K., Sawaguchi, S., Matsubara, T., Yamaguchi, T., Shinoda, R., Koiso, M. and Teruya, K., 2018. Induction of female‐to‐male sex change in a large protogynous fish, Choerodon schoenleinii. Marine Ecology, 39(1), p.e12484. doi.org/10.1111/maec.12484
Dicken, M.L., Hussey, N.E., Christiansen, H.M., Smale, M.J., Nkabi, N., Cliff, G. and Wintner, S.P., 2017. Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters. PloS one, 12(6), p.e0177897. doi.org/10.1371/journal.pone.0177897

Holmes, B.J. et al. (2018) “Lack of multiple paternity in the Oceanodromous Tiger Shark (galeocerdo cuvier),” Royal Society Open Science, 5(1), p. 171385. Available at: https://doi.org/10.1098/rsos.171385.

Gerzeli, Giuseppe; de Stefano, Gian Franco; Bolognani, Lorenzo; Koenig, Kurt W.; Gervaso, Maria Victoria; and Omodeo-Salé, Maria Fausta, "The Rectal Gland in Relation to the Osmoregulatory Mechanisms of Marine and Freshwater Elasmobranchs" (1976). Investigations of the Ichthyofauna of Nicaraguan Lakes. 51

Simpfendorfer, C.A., Goodreid, A.B. & McAuley, R.B. Size, Sex And Geographic Variation in the Diet of the Tiger Shark, Galeocerdo Cuvier, From Western Australian Waters. Environmental Biology of Fishes 61, 37–46 (2001). https://doi.org/10.1023/A:1011021710183

Pirog, A., Magalon, H., Poirout, T., & Jaquemet, S. (2020).New insights into the reproductive biology of the tiger shark Galeocerdo cuvier and no detection of polyandry in Reunion Island, western Indian Ocean. Marine and Freshwater Research, 71(10), 1301. doi:10.1071/mf19244

Rangel, B.S., Afonso, A.S., Bettcher, V. et al. Evidence of mating scars in female tiger sharks (Galeocerdo cuvier) at the Fernando de Noronha Archipelago, Brazilian Equatorial Atlantic. Environ Biol Fish 106, 107–115 (2023). https://doi.org/10.1007/s10641-022-01380-z
Tomita, T., Murakumo, K., Komoto, S., Dove, A., Kino, M., Miyamoto, K. and Toda, M., 2020. Armored eyes of the whale shark. Plos one, 15(6), p.e0235342. doi.org/10.1371/journal.pone.0235342

Thomson, J.A., Araujo, G., Labaja, J., McCoy, E., Murray, R. and Ponzo, A., 2017. Feeding the world's largest fish: highly variable whale shark residency patterns at a provisioning site in the Philippines. Royal Society open science, 4(9), p.170394. doi.org/10.1098/rsos.170394

Miranda, J.A. Yates N, Agustines A, Enolva N P., Labaja J, Legaspi C, McCoy E , Ponzo A , Snow S, Araujo G (2020) “Donsol: An important reproductive habitat for the world's largest fish rhincodon typus ?,” Journal of Fish Biology, 98(3), pp. 881–885. Available at: https://doi.org/10.1111/jfb.14610.

Weber, J.A., Park, S.G., Luria, V., Jeon, S., Kim, H.M., Jeon, Y., Bhak, Y., Jun, J.H., Kim, S.W., Hong, W.H. and Lee, S., 2020. The whale shark genome reveals how genomic and physiological properties scale with body size. Proceedings of the National Academy of Sciences, 117(34), pp.20662-20671. doi.org/10.1073/pnas.1922576117
Cerutti-Pereyra, F., Bassos-Hull, K., Arvizu-Torres, X. et al. Observations of spotted eagle rays (Aetobatus narinari) in the Mexican Caribbean using photo-ID. Environ Biol Fish 101, 237–244 (2018). https://doi.org/10.1007/s10641-017-0694-y

McCallister, M., Mandelman, J., Bonfil, R. et al. First observation of mating behavior in three species of pelagic myliobatiform rays in the wild. Environ Biol Fish 103, 163–173 (2020). https://doi.org/10.1007/s10641-019-00943-x

Mendonça, S.A. et al. (2020) “Dancing with the devil: Courtship behaviour, mating evidences and population structure of the Mobula Tarapacana (Myliobatiformes: Mobulidae) in a remote archipelago in the equatorial Mid-Atlantic Ocean,” Neotropical Ichthyology, 18(3). Available at: https://doi.org/10.1590/1982-0224-2020-0008.
Lohe, A., 2021. Adriatic Sturgeon (Acipenser naccarii), European sturgeon (Acipenser sturio), Chinese sturgeon (Acipenser sinensis), Sakhalin sturgeon (Acipenser mikadoi), Kaluga sturgeon (Huso dauricus) 5-Year Review: Summary and Evaluation 2021.